每年都会在医院中获得数百万个大脑MRI扫描,这比任何研究数据集的规模都要大得多。因此,分析此类扫描的能力可以改变神经成像研究。然而,由于没有自动化算法可以应对临床采集的高度可变性(MR对比度,分辨率,方向等),因此它们的潜力仍未开发。在这里,我们提出了Synthseg+,这是一个AI分割套件,首次可以对异质临床数据集进行强有力的分析。具体而言,除了全脑分割外,SynthSeg+还执行皮质细胞,颅内体积估计和自动检测故障分割(主要是由质量非常低的扫描引起的)。我们在七个实验中证明了合成++,包括对14,000张扫描的老化研究,在该研究中,它准确地复制了在质量更高的数据上观察到的萎缩模式。 Synthseg+公开发布是一种现成的工具,可在广泛设置中解锁定量形态计量学的潜力。
translated by 谷歌翻译
与痴呆症相关的认知障碍(CI)在全球范围内影响超过5500万人,并且每3秒钟以一个新病例的速度迅速增长。随着临床试验反复出现的失败,早期诊断至关重要,但是在低水平和中等收入国家中,全球75%的痴呆症病例未被诊断为90%。众所周知,当前的诊断方法是复杂的,涉及对医学笔记,大量认知测试,昂贵的脑部扫描或脊柱液体测试的手动审查。与CI相关的信息经常在电子健康记录(EHR)中找到,并且可以为早期诊断提供重要线索,但是专家的手动审查是繁琐的,并且容易发生。该项目开发了一种新型的最新自动筛选管道,用于可扩展和高速发现EHR中的CI。为了了解EHR中复杂语言结构的语言环境,构建了一个8,656个序列的数据库,以训练基于注意力的深度学习自然语言处理模型以对序列进行分类。使用序列级别分类器开发了基于逻辑回归的患者级别预测模型。深度学习系统的精度达到了93%,AUC = 0.98,以识别其EHR中没有较早诊断,与痴呆有关的诊断代码或与痴呆有关的药物的患者。否则,这些患者将未被发现或检测到太晚。 EHR筛选管道已部署在Neurahealthnlp中,这是一种用于自动化和实时CI筛选的Web应用程序,只需将EHR上传到浏览器中即可。 Neurahealthnlp更便宜,更快,更容易获得,并且胜过当前的临床方法,包括基于文本的分析和机器学习方法。它使得早期诊断可在稀缺的医疗服务中可行,但可访问的互联网或蜂窝服务。
translated by 谷歌翻译
痴呆症是一种神经退行性疾病,导致认知下降,并影响全世界超过5000万人。痴呆症是由医疗保健专业人士诊断的 - 只有患有痴呆症的四个人中只有一名诊断出来。即使制造诊断,也可能无法作为患者图表中的疾病(ICD)诊断码的结构化国际分类。与认知障碍(CI)有关的信息通常在电子健康记录(EHR)中发现,但专家临床医生票据的手工审查既耗时,往往容易出错。本票据的自动化挖掘为在EHR数据中标记有认知障碍患者的机会。我们开发了自然语言处理(NLP)工具,以识别具有认知障碍的患者,并证明语言背景提高了认知障碍分类任务的性能。我们微调我们的注意力深入学习模型,可以从复杂的语言结构中学习,并且相对于基线NLP模型的精度(0.93)大大提高(0.84)。此外,我们表明深度学习NLP可以成功识别没有痴呆相关的ICD代码或药物的痴呆症患者。
translated by 谷歌翻译
With more and more data being collected, data-driven modeling methods have been gaining in popularity in recent years. While physically sound, classical gray-box models are often cumbersome to identify and scale, and their accuracy might be hindered by their limited expressiveness. On the other hand, classical black-box methods, typically relying on Neural Networks (NNs) nowadays, often achieve impressive performance, even at scale, by deriving statistical patterns from data. However, they remain completely oblivious to the underlying physical laws, which may lead to potentially catastrophic failures if decisions for real-world physical systems are based on them. Physically Consistent Neural Networks (PCNNs) were recently developed to address these aforementioned issues, ensuring physical consistency while still leveraging NNs to attain state-of-the-art accuracy. In this work, we scale PCNNs to model building temperature dynamics and propose a thorough comparison with classical gray-box and black-box methods. More precisely, we design three distinct PCNN extensions, thereby exemplifying the modularity and flexibility of the architecture, and formally prove their physical consistency. In the presented case study, PCNNs are shown to achieve state-of-the-art accuracy, even outperforming classical NN-based models despite their constrained structure. Our investigations furthermore provide a clear illustration of NNs achieving seemingly good performance while remaining completely physics-agnostic, which can be misleading in practice. While this performance comes at the cost of computational complexity, PCNNs on the other hand show accuracy improvements of 17-35% compared to all other physically consistent methods, paving the way for scalable physically consistent models with state-of-the-art performance.
translated by 谷歌翻译
Automotive radar sensors provide valuable information for advanced driving assistance systems (ADAS). Radars can reliably estimate the distance to an object and the relative velocity, regardless of weather and light conditions. However, radar sensors suffer from low resolution and huge intra-class variations in the shape of objects. Exploiting the time information (e.g., multiple frames) has been shown to help to capture better the dynamics of objects and, therefore, the variation in the shape of objects. Most temporal radar object detectors use 3D convolutions to learn spatial and temporal information. However, these methods are often non-causal and unsuitable for real-time applications. This work presents RECORD, a new recurrent CNN architecture for online radar object detection. We propose an end-to-end trainable architecture mixing convolutions and ConvLSTMs to learn spatio-temporal dependencies between successive frames. Our model is causal and requires only the past information encoded in the memory of the ConvLSTMs to detect objects. Our experiments show such a method's relevance for detecting objects in different radar representations (range-Doppler, range-angle) and outperform state-of-the-art models on the ROD2021 and CARRADA datasets while being less computationally expensive. The code will be available soon.
translated by 谷歌翻译
Deep learning models are being increasingly applied to imbalanced data in high stakes fields such as medicine, autonomous driving, and intelligence analysis. Imbalanced data compounds the black-box nature of deep networks because the relationships between classes may be highly skewed and unclear. This can reduce trust by model users and hamper the progress of developers of imbalanced learning algorithms. Existing methods that investigate imbalanced data complexity are geared toward binary classification, shallow learning models and low dimensional data. In addition, current eXplainable Artificial Intelligence (XAI) techniques mainly focus on converting opaque deep learning models into simpler models (e.g., decision trees) or mapping predictions for specific instances to inputs, instead of examining global data properties and complexities. Therefore, there is a need for a framework that is tailored to modern deep networks, that incorporates large, high dimensional, multi-class datasets, and uncovers data complexities commonly found in imbalanced data (e.g., class overlap, sub-concepts, and outlier instances). We propose a set of techniques that can be used by both deep learning model users to identify, visualize and understand class prototypes, sub-concepts and outlier instances; and by imbalanced learning algorithm developers to detect features and class exemplars that are key to model performance. Our framework also identifies instances that reside on the border of class decision boundaries, which can carry highly discriminative information. Unlike many existing XAI techniques which map model decisions to gray-scale pixel locations, we use saliency through back-propagation to identify and aggregate image color bands across entire classes. Our framework is publicly available at \url{https://github.com/dd1github/XAI_for_Imbalanced_Learning}
translated by 谷歌翻译
Pretraining has been shown to scale well with compute, data size and data diversity. Multitask learning trains on a mixture of supervised datasets and produces improved performance compared to self-supervised pretraining. Until now, massively multitask learning required simultaneous access to all datasets in the mixture and heavy compute resources that are only available to well-resourced teams. In this paper, we propose ColD Fusion, a method that provides the benefits of multitask learning but leverages distributed computation and requires limited communication and no sharing of data. Consequentially, ColD Fusion can create a synergistic loop, where finetuned models can be recycled to continually improve the pretrained model they are based on. We show that ColD Fusion yields comparable benefits to multitask pretraining by producing a model that (a) attains strong performance on all of the datasets it was multitask trained on and (b) is a better starting point for finetuning on unseen datasets. We find ColD Fusion outperforms RoBERTa and even previous multitask models. Specifically, when training and testing on 35 diverse datasets, ColD Fusion-based model outperforms RoBERTa by 2.45 points in average without any changes to the architecture.
translated by 谷歌翻译
Reinforcement Learning (RL) generally suffers from poor sample complexity, mostly due to the need to exhaustively explore the state space to find good policies. On the other hand, we postulate that expert knowledge of the system to control often allows us to design simple rules we expect good policies to follow at all times. In this work, we hence propose a simple yet effective modification of continuous actor-critic RL frameworks to incorporate such prior knowledge in the learned policies and constrain them to regions of the state space that are deemed interesting, thereby significantly accelerating their convergence. Concretely, we saturate the actions chosen by the agent if they do not comply with our intuition and, critically, modify the gradient update step of the policy to ensure the learning process does not suffer from the saturation step. On a room temperature control simulation case study, these modifications allow agents to converge to well-performing policies up to one order of magnitude faster than classical RL agents while retaining good final performance.
translated by 谷歌翻译
In Novel Class Discovery (NCD), the goal is to find new classes in an unlabeled set given a labeled set of known but different classes. While NCD has recently gained attention from the community, no framework has yet been proposed for heterogeneous tabular data, despite being a very common representation of data. In this paper, we propose TabularNCD, a new method for discovering novel classes in tabular data. We show a way to extract knowledge from already known classes to guide the discovery process of novel classes in the context of tabular data which contains heterogeneous variables. A part of this process is done by a new method for defining pseudo labels, and we follow recent findings in Multi-Task Learning to optimize a joint objective function. Our method demonstrates that NCD is not only applicable to images but also to heterogeneous tabular data.
translated by 谷歌翻译
In this paper, the CONFIG algorithm, a simple and provably efficient constrained global optimization algorithm, is applied to optimize the closed-loop control performance of an unknown system with unmodeled constraints. Existing Gaussian process based closed-loop optimization methods, either can only guarantee local convergence (e.g., SafeOPT), or have no known optimality guarantee (e.g., constrained expected improvement) at all, whereas the recently introduced CONFIG algorithm has been proven to enjoy a theoretical global optimality guarantee. In this study, we demonstrate the effectiveness of CONFIG algorithm in the applications. The algorithm is first applied to an artificial numerical benchmark problem to corroborate its effectiveness. It is then applied to a classical constrained steady-state optimization problem of a continuous stirred-tank reactor. Simulation results show that our CONFIG algorithm can achieve performance competitive with the popular CEI (Constrained Expected Improvement) algorithm, which has no known optimality guarantee. As such, the CONFIG algorithm offers a new tool, with both a provable global optimality guarantee and competitive empirical performance, to optimize the closed-loop control performance for a system with soft unmodeled constraints. Last, but not least, the open-source code is available as a python package to facilitate future applications.
translated by 谷歌翻译